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I. INTRODUCTION

In this paper we discuss the scaling properties of heat transport in
Rayleigh-Benard systems. Although this topic has received a lot of atten-
tion during the last years, still there are controversial interpretations of
experimental results. In 1989, Libchaber, Kadanoff and co-workers(1) have
shown that a new and unpredicted scaling range is observed in Rayleigh-
Benard systems at large enough Rayleigh numbers. They also proposed a
physical picture of the experimental observations, based on the crucial role
played by "plumes", the coherent structures present in thermal convection,
in heat transport. This picture was somehow questioned by Shraiman and
Siggia, who proposed a rather different theoretical approach. Both models
make relatively ad hoc assumptions on qualitative features of the fluid
motion in appropriate sub-domains of a Rayleigh-Benard cell. These
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In this paper we discuss some theoretical aspects concerning the scaling laws of
the Nusselt number versus the Rayleigh number in a Rayleigh-Benard cell. We
present a new set of numerical simulations and compare our findings against the
predictions of existing models. We then propose a new theory which relies on
the hypothesis of Bolgiano scaling. Our approach generalizes the one proposed
by Kadanoff, Libchaber, and coworkers and solves some of the inconsistencies
raised in the recent literature.
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assumptions, although reasonable on physical ground, are not explicitly
justified by the still poorly understood dynamics, in a system of rather
complex phenomenology.

In this paper, we try to build a more dynamical picture of the
problem, by establishing a link between the scaling properties of heat trans-
port and other well controlled dynamical features encountered in convec-
tive turbulence. We start presenting and discussing a new set of results
based on direct numerical simulation which, in our opinion, are able to
shed more light on the problem. We then generalize the model of Castaing
et al.(1) with a simple ansatz, whose basic physical meaning is that the
dynamics that control Bolgiano scaling in convective turbulence also
modulates the scaling of the Nusselt number. Our ansatz leads to well
defined predictions that we have verified numerically (and could be
experimentally checked). The obvious objection that Bolgiano scaling
(expected to set in at scales larger than the Bolgiano length) can hardly
play any role in heat transfer (where scales of the order of the boundary
layers are obviously important) can be solved by observing, as already
pointed out in ref. 10, that quantities usually regarded as globally charac-
terizing the flow (such as energy or temperature dissipation, Bolgiano
length) can still be locally defined in a convective cell as a function of the
vertical coordinate. In particular, Bolgiano length decreases sharply in
regions close to the boundary layer.

Our paper is organized as follows. In Section II we introduce the
equation of motion, the dimensionless parameters describing the problem
and Bolgiano scaling. In Section III we review the theoretical models
proposed by Castaing et al. and Shraiman and Siggia emphasizing the
physical assumptions underlying the two different approach. In Section IV
we present our numerical simulations and in Section V, the most important
part of the present work, we discuss and justify a simple ansatz which
generalizes the model proposed in ref. 1. In Section VI we present our con-
clusions.

II. THE PROBLEM

We consider a fluid in a rectangular cell of horizontal size L and vertical
size H. The fluid is heated from below and cooled from above by contact
with two heat reservoirs. The temperature field T(x, y, z; t) satisfies the
boundary conditions:
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Furthermore the vertical walls are supposed to be adiabatic (i.e., thermal
exchange through these walls are supposed to be negligible). We also
assume that the fluid flow satisfies the Boussinesq equation of motion (see
ref. 2):

where g is the acceleration of gravity, a the volume thermal expansion coef-
ficient, v and x kinematic and thermal diffusivity, 6=T—T. The Boussinesq
equations of motion are a first order approximation of buoyancy effects
and are supposed to be accurate if thermal gradients are not too strong.
Furthermore the incompressibility condition is valid if velocities are much
smaller than sound speed.

The relevant dimensionless parameters in Eqs. (2) and (3) are the
Rayleigh number Ra, the Prandtl number Pr and the aspect ratio F:

For large enough values of Ra, the flow becomes turbulent, i.e.,
chaotic both in time and in space. One of the basic issues that we want to
discuss in this paper concerns how much heat is transferred from the
bottom boundary to the top boundary. To this end it is useful to introduce
the dimensionless number:

where w' is the turbulent fluctuation of the vertical velocity, & the (tur-
bulent) temperature fluctuation and < • • • > stands for space and time
averages. Nu is called the Nusselt number. It measures the amount of heat
transported by turbulent fluctuations with respect to the heat transport due
to molecular motion (xdT/H is the heat flux due to conduction if the fluid
were at rest).

We can now state our problem in terms of the dimensionless param-
eters so far introduced: we want to investigate the functional relationship,
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To our knowledge, no meaningful effect has been found experimentally
on turbulent heat transport due to the geometric parameter F. Therefore,
we shall neglect, hereafter, the dependency on F in (7). We shall confine
most of our discussion to the Pr = 1 case.

If the fluid were at rest the temperature drop inside the cell would be
linear. Because of convection the mean temperature profile differs from the
purely conductive one. In particular one find that almost all the tem-
perature drop occurs in the thermal boundary layers. The thickness of the
thermal boundary layer, A, can be roughly defined as the thickness of the
layer over which the temperature drop is nearly equal to AT/2. An impor-
tant relation (experimentally well verified) allows us to connect A to the Nu
number:

We remark that relation (8) becomes rigorously true if one defines A
as follows:

By means of the relation (8) our problem can be rephrased as the
understanding of the scaling of X versus Ra.

A related issue that we want to address is the role of buoyancy forces
effects on the statistical properties of turbulent fluctuations for Rayleigh-
Benard convection. Let us introduce the velocity and temperature dif-
ference defined as:

Following Yakhot(12) we can write:

where e is the mean rate of energy dissipation, e = v/2 j £,- _,- (djVj + djV ,)2 dlx,
and N is the mean rate of temperature dissipation, N = yJ2 \ £ , (d,r)2d3A\
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Equations (12) and (13) replace the well known "4/5" Kolmogorov
equation for homogeneous and isotropic turbulence. These equations have
been derived by assuming that small scale turbulent fluctuations in
Rayleigh-Benard system are, to first approximation, homogeneous and
isotropic (see Yakhot(12)). The second term on the right hand side of (12)
and (13) represents however a non isotropic, thermally driven, contribu-
tion. Therefore (12) and (13), although cannot be proven rigorously, can
be useful as guidelines for describing the difference, if any, between
homogeneous isotropic turbulence and thermal turbulence.

Neglecting intermittency effects, from (13) we have the scaling relation:

There are two physically interesting limit regimes in Eq. (12): either
the first or the second term on the right hand side dominates. In the latter
case we deduce the following balance:

By using (14) we obtain:

We can equivalently rephrase Eqs. (15)–(16) as scaling laws for the
velocity and temperature increments:

The scaling property defined by (17)–(18) is referred to as Bolgiano
scaling(3). Using Bolgiano scaling, we can evaluate the second term of the
right hand side of (12). We obtain:

From (19) we obtain a consistency condition, requiring that the
second term of the r.h.s. in (12) is larger than er. This is true for scales
r > LB, where:
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LB is called the Bolgiano scale. For r < LB, the statistical properties of
thermal turbulence should be described by Kolmogorov theory of tur-
bulence with scaling:

We remark that Eq. (22) corresponds to the scaling of a passive scalar
while Eq. (21) is the usual Kolmogorov (1941) prediction. Finally let us
notice that for r> LB the first term on the r.h.s. of (13) is always greater
than the second term, which represents a consistency condition.

The dependence of both N and e on Nu and Ra can be exactly derived
from the equation of motion. We have (see ref. 5 for details):

Beside any rigorous derivations, we can give a physical meaning to
(23), (24) using the following arguments. Consider first the mean rate of
temperature dissipation. Since almost all the temperature gradient (AT) is
across the thermal boundary layer (of thickness X) we can estimate:

On the other hand, by using Eq. (23), we obtain:

which is equivalent to say that the Bolgiano length LB can be interpreted
as the characteristic scale of the eddies which transport heat in a Rayleigh-
Benard system.

Evidences of Bolgiano scaling (17) and (18) have been reported both
in 2D(7) and 3D(8) numerical simulations of Rayleigh-Benard systems (see
ref. 9 for a detailed description including the effects of intermittency).

III. REVIEW OF PROPOSED SCALING THEORIES ON
HEAT TRANSPORT

In this section we review some theoretical models, proposed in the
past, to derive the scaling properties of Nu vs. Ra (for a review see also
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ref. 3). Our emphasis is on the physical assumptions underlying the models,
rather than on rigorous derivations from the equations of motion.

We first discuss three different arguments leading to the old (and
currently experimentally disproved) scaling relation Nu~Ra1/3. Such rela-
tion was predicted by many authors among them Malkus,(l9, 20) Priestley,(21)

Howard,(22, 23)Spiegel.(24)

The first argument assumes that the boundary layer is marginally stable,
i.e., that the effective Ra(k) number computed at the thermal boundary layer
thickness, k, is equal to a critical Rayleigh number Rac, independent of Ra.
Since by definition, Ra = a.g ATH3/vx, we get Ra(k) = R • (k/H)3 and henc
Ra = Rac(H/A)3. Therefore, k~H(Rac/Ra)1/3. Using (8) we finally obtain
the result Nu ~ Rax/3.

Another way to reach the same result is the assumption of the indepen-
dence of the heat flux from the height of the cell, H. Supposing a scaling of
the form Nu ~ Rar, the Nusselt number is just F/(xAT/H) ~ (cxg ATH3lvx)y,
y is required to be 1/3, for the heat flux F be independent of H. From this
argument we understand that every model which leads to a 1/3 exponent,
does, implicitly, assume a decoupling of the top and bottom boundary
layers.

Finally, we want to point out a rather simple argument proposed in
ref. 12 leading to the same result. Let us assume that, close to the thermal
boundary layer, the statistical properties of turbulent fluctuations are not
affected by buoyancy effect. This implies, that we can use the standard
dimensional analysis of Kolmogorov theory. Let us also assume that the
thermal boundary layer thickness, k, equals the viscous boundary layer
thickness, r/, (i.e., k~rj). Assuming K41 scaling for velocity differences,
dv(r)~(sr)1/3, from the condition Re~ 1 ~ (Sv(rj) ?/)/v and from the scalin
e~ Nu- Raws obtain Nu ~ Rai/3. We remark that this argument is self-con-
sistent, because s~Ra4/3, N~Ra113 so that LB~Ra~1/U, which implies
rj~e~m ~ Ra~1/3 and k~rf<^LB. The above argument can also be derived
by estimating the energy dissipation e(k) in the thermal boundary layer by
the Kolmogorov relation e ̂  u(k)3/k, where u(k)2 ^ (<xg ATk). By assuming
that most of the energy dissipation takes place in the thermal boundary layer
and using (24) we obtain Nu ~ Ral/3.

We observe that in all cases, for scales of order k and Ra large enough,
k«LB. Thus Bolgiano scaling should not be applied near by the bound-
ary layer.

In an important paper, Castaing et al.(1) reported for the first time
clear evidence that



Castaing et al. (1989) have shown that this scaling law is valid for
i?a>106. Further experimental results (Ciliberto(5)) have shown that
y~2/7 even for lower Ra. The results reported in Castaing et al. have
motivated many experimental and theoretical efforts aimed at under-
standing the physical mechanism leading to the (unexpected) scaling (27).
Here we review two rather different theoretical model proposed in Castaing
et al.(1) and Shraiman-Siggia.(4)

The Castaing et al.(1) theory is based upon the assumption that there
exist three layers (hereafter referred to as A, B and C) characterized by dif-
ferent physical properties:

A-layer: the thermal boundary layer, near the bottom and top boun-
daries, of thickness X and temperature differences AT/2. In the A-layer,
instabilities generate plumes, of typical size X, which are expelled into the
B-layer.

B-layer: a mixing region, of thickness much greater that X and smaller
than the size of the cell H. In this layer thermal plumes are accelerated due
to buoyancy effect. We shall indicate by dT and dv the characteristic size
of temperature and velocity fluctuations, respectively.

C-layer: the central region of the cell of size comparable with the size
of the system. Velocity and temperature fluctuations will be indicated by uc

and Tc respectively. In this layer thermal plumes are advected with almost
constant velocity.

The physical picture behind this theory is the following. Thermal plumes
are generated in the A-layer, accelerated in the B-layer and advected in the
C-layer. The Nusselt number can be estimated at the center of the cell
(where the heat flux is purely convective) as
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To estimate the velocity fluctuations in the center of the cell the only
dimensional relation (ignoring thermal diffusivity and kinematic viscosity)
is the following

The basic assumption of the theory is that in the B-layer the charac-
teristic velocity fluctuation are given by the balance between the buoyancy
effect of the plume and the viscous effect, while temperature fluctuations are
equal to the temperature fluctuations carried out by the plumes, namely



AT. Furthermore, the velocity fluctuations in the B-layer equal the velocity
fluctuation in the central region. Thus, we obtain:

From relation (8), (28), (29) and (30) it follows that Nu~Ra2/1. Let
us remark that, due to (30), X can be regarded as the cutoff-scale of velocity
fluctuations. One of the most important point in the Castaing et al. theory
is the role played by the thermal plumes, which are well identified coherent
structures observed in the chaotic dynamics of thermal turbulence. Equa-
tion (30) is based on the assumption that coherent plumes do exist and are
observed in the B-layer and set the characteristic velocity and temperature
fluctuations in Rayleigh-Benard systems.

A major criticism on the Castaing et al. model concerns the validity of
Eq. (30) in the mixing layer B. Indeed, as already discussed, Eq. (30)
implies a balance between viscous dissipation and buoyancy force. The
buoyancy force, however, should be relevant only for scales larger than LB,
the Bolgiano scale. The analysis performed in Section II, indicates that,
for scales close to the thermal boundary layer X, LB is much greater
than X, which implies that velocity fluctuations cannot be controlled by the
overall strength of the buoyancy force. This implies that the thickness of
the thermal boundary layer cannot be fixed by the balancing proposed in
Castaing et al.

In order to overcome this criticism, a rather different approach has
been proposed by Shraiman and Siggia, whose theory is based on the rele-
vant dynamical role played by the mean flow observed in Rayleigh-Benard
cells. The onset of a mean flow is due to plumes rising from the unstable
boundary layer. On the other hand, the mean flow generates a viscous
boundary layer, which, in turn, control the thickness of the thermal bound-
ary layer. It is assumed, therefore, that the thermal boundary layer is con-
tained in the viscous layer. As we shall see, the most important assumption
in the theory is that all energy dissipation is constrained inside the viscous
boundary layer.

The starting point of Shraiman and Siggia theory is that, within the
thermal boundary layer, there exists a balancing between the mean flow
advection of horizontal temperature gradient and vertical thermal dissipa-
tion, namely
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Using the exact relation <£> = Nu · Ra and under the assumption that
the relevant part of the energy is dissipated inside the viscous boundary
layer, we obtain

Finally from (33), (34) and (35) we obtain Nu~Ra2/7.
We want to point out that the two theories are based on two quite

different physical pictures of the basic mechanisms which control heat
transport in Rayleigh-Benard system. In the theory by Castaing et al.
buoyancy effects and their balance with dissipation control the charac-
teristic size of temperature and velocity fluctuations. According to
Shraiman and Siggia, on the other hand, buoyancy is responsible to main-
tain the mean flow in the system which dynamically controls temperature
and velocity fluctuations.

In the next section we present further experimental and numerical
results which will clarify the physics of the thermal boundary layer.

We close this section remarking that the scaling properties discussed
so far, are not supposed to be asymptotic, as shown by Kraichnan(11) in the
early sixties. For very large Ra numbers an asymptotic regime should
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The velocity profile is supposed to be linear inside the viscous bound-
ary layer (T is a mean shear which has to be determined self-consistently)

From (31) and (32) we can derive a relation between the thermal
boundary layer thickness {X) and the unknown parameter T.

The viscous layer thickness (n) can be estimated using the requirement



Since the maximal rate of energy dissipation associated with this velocity
is U3

M/H = e, it follows that Nu~Ra1/2. We notice that for such a scaling
regime the Bolgiano scale would became Ra independent. Asymptotic
prediction of 1/2 exponent can also be derived as a rigorous upper bound
of heat transport (see Doering and Constantin).

From the experimental point of view, some evidences of transition to
the asymptotic regime have been recently reported.(15)

IV. NUMERICAL RESULTS

An important insight in the physics of thermal convection can be
obtained by direct numerical simulation (DNS) of Rayleigh-Benard cells.
An obvious limitation of DNS is that the available range in Ra is usually
much smaller than in laboratory experiments. Nevertheless, DNS are
extremely useful in understanding the validity of different physical assump-
tions and, occasionally, in checking the predictions on physical quantities
which are difficult to measure in a real experiments. In this section we dis-
cuss a set of new numerical simulations aimed at understanding the correct
physics of heat transport in Rayleigh-Benard.

As already pointed out, numerical simulation are confined to rather
small Ra number with respect to those available in real experiments. In
ref. 1 the 2/7 scaling exponent was observed for Ra larger than 106. The
same scaling exponent was reported by De Luca et al.(16) in 2D numerical
simulation of Rayleigh-Benard.

Here we show that the 2/7 scaling exponent is clearly observed, in 3D,
even at rather low Ra number. We have performed a number of numerical
simulations using a LBE (Lattice Boltzmann Equation)(14) code on a
parallel supercomputer(17) for a 3D Rayleigh-Benard cell of aspect ratio 1.
For a detailed description of the numerical code used we refer the reader
to ref. 7. For the temperature field, we have imposed adiabatic boundary
conditions on vertical walls, while top and bottom walls have been kept at
fixed temperature (respectively —AT/2 and AT/2). Velocity boundary con-
ditions are free-slip on vertical walls and no-slip (zero velocity) on top/
bottom walls. All run has been done at Pr = 1 and cover a range of about
one order of magnitude in Ra around /?a~ 106.

We have performed runs at different Ra in order to measure the
Nu{Ra) dependence. We found a clear Nu~ Ra111 scaling, see Fig. 1.

Heat Transfer in Rayleigh-Benard Systems 911

emerge as can be understood by the following argument. The maximal
velocity which can be reached inside the cell can be estimated as:



912 Benzi, Toschi, and Tripiccione

Fig. 1. Scaling of Nu versus Ra. Data + are taken from ref. 16 for a 2D numerical simula-
tion (fitted slope 0.280 ± 0.001). Data * from our numerical simulations with no-slip boundary
conditions (fitted slope 0.283 ±0.003). Same for x but with free-slip boundary conditions on
top/bottom walls (fitted slope 0.277 ±0.003).

The results shown in Fig. 1 together with those reported by De Luca
et al., clearly indicate that the scaling exponent does not depend on the
dimensionality of the system. This implies that arguments based on three
dimensional Kolmogorov theory of turbulence must be ruled out.

As discussed in the previous section, the viscous boundary layer near
the top and the bottom of the Rayleigh-Benard cell plays an important
role in the model suggested by Shraiman and Siggia. In order to clarify this
point, we have performed a new set of numerical simulations, with free-slip
boundary conditions for the velocity on the top and bottom walls. The
choice of this kind of boundary conditions allowed us to completely
remove the velocity boundary layers, while keeping a dissipation of kinetic
energy inside the bulk of the cell. In Fig. 1 we have also reported the
scaling of Nu versus Ra for the free-slip case. A clear scaling is observed,
again, with slope close to 2/7.

The numerical simulations discussed above indicate that the viscous
boundary layer plays a marginal role in determining the scaling exponent
of heat transport. We want to remark that in the theory proposed by
Shraiman and Siggia one of the basic physical assumptions is that most
of the energy dissipation occurs in the viscous boundary layer. Certainly
this is not the case in the numerical simulation reported in Fig. 1 (free
slip boundary condition), although the scaling exponent of Nu does not
change. Our findings, therefore, seem to rule out the approach proposed by



Shraiman and Siggia, at least for what concerns the assumption on the
energy dissipation.

V. BOLGIANO LENGTH AND NON-HOMOGENEOUS
CONVECTIVE CELL

We have seen in Section III that one of the major criticism on the
theoretical model proposed by Castaing et al. concerns the relevance of
buoyancy force in the thermal boundary layer. The criticism is based on
the fact that the Bolgiano scale LB is much larger than X for large Ra
number. By using the observed scaling A ^ Nu~' s Ra2p, together with
Eqs. (23), (24) and (20) we obtain LB^Ra~3/28. This result show that the
ratio LB/X increases as Ra5/28. From a physical point of view, the Bolgiano
scale represents the scale at which energy is injected in the system as
"potential energy." Buoyancy force converts this energy in kinetic energy.

The analysis made in Section II was appropriate for a homogeneous/
isotropic convective cell. However, Rayleigh-Benard convective cell is not
homogeneous neither isotropic. We can slightly generalize the analysis of
Section II by assuming that turbulence in the Rayleigh-Benard is "locally"
homogeneous and isotropic. It follows that we must interpret the various
quantities (as for example the energy dissipation £(2), the Bolgiano length
LB(z) and so on) as depending locally on z: the distance from the bottom
wall.

Following this approach, we can introduce a local (but plane-
averaged) Bolgiano length as the following:
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Using direct numerical simulations, we can obtain the behavior of s(z)
and LB(z) in the Rayleigh-Benard. In Fig. 2 we report, the energy dissipa-
tion averaged on horizontal planes as a function of z. As it is evident,
energy is not evenly dissipated inside the cell. In Fig. 3 the typical behavior
of the Bolgiano length, LB(z), as obtained from definition (37), is shown.

We remark that while the Bolgiano length grows inside the bulk of the
cell (in particular in the center of the cell it reaches its maximum, nearly
equal to the size of the cell itself) it is relatively small near the top/bottom
boundaries.

This observation solves the apparent inconsistency raised in Sec-
tion III where we noticed that k«LB: while the global Bolgiano length,
LB, can be much greater than the thermal boundary layer thickness,
locally, the Bolgiano length, Lg(z) has its minimum value around the
boundary layer thickness itself.
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Fig. 2. Typical behavior of the energy dissipation (in arbitrary units), i:{z), inside the cell.

The results shown in Figs. 2 and 3 suggest that close to the thermal
boundary layer the buoyancy force is the dominant effect in the system.
Thus, velocity and temperature fluctuations should be described by the
Bolgiano scaling (17) and (18). On the other hand, the thermal boundary
layer can be interpreted as the scale at which dissipation becomes relevant
with respect to buoyancy force. By using (17) and (18) and balancing the
second term (namely the forcing) in Eq. (12) with the third term, we can

Fig. 3. Typical behavior of the Bolgiano length (in lattice units), LB(z), inside the cell.



Equation (41) should be considered a prediction of the theory so far dis-
cussed. We show in Fig. 4 the values of LB(k) and X as obtained in our
numerical simulations. As one can see, the numerical results are quite con-
sistent with the prediction (41).

Inside the thermal boundary layer, we can assume, following
Shraiman and Siggia, that the velocity profile is linear in z and that the
advection of the mean flow balances the thermal dissipation as expressed
in Eq. 31. By using the same approach suggested by Shraiman-Siggia, we
obtain that the mean shear inside the thermal boundary layer should be
proportional to X~l. This implies that the mean rate of energy dissipation
eBL, integrated inside the thermal boundary layer, is proportional to l~5.
Therefore we finally obtain:
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introduce the Bolgiano dissipation length rB. After some algebraic com-
putation we obtain

From Eq. (40) we immediately see that the ansatz (39) implies:

Using Eq. (38) and (24) we immediately obtain Nu^Ra 2/7. Our ansatz
(39) generalizes the approach proposed by Castaing et al. by using the
basic Eqs. (12) and (13).

By using the definition of LB(z) and the Bolgiano scaling (17) and
(18) we can compute the value of the Bolgiano length at scale A. We
estimate the rate of energy dissipation as e(A) m (<5t>(A)2)/A2. Using (24) for
the estimate of N, we finally obtain:

rB is equivalent to the Kolmogorov length r\ for turbulent flows without
buoyancy force. In a Rayleigh-Benard cell, temperature dissipation, N, is
confined in the thermal boundary layer. Therefore, Eq. (38) can be used
locally near the thermal boundary layer assuming that N is the global
mean rate of temperature dissipation.

Looking again at the results shown in Figs. 2 and 3, we are tempted
to assume that in Rayleigh-Benard turbulence the thickness of the thermal
boundary layer adjusts itself in such a way that it becomes equal to the
Bolgiano dissipation length, i.e.,
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Equation (42) is consistent with the numerical simulations, see Fig. 5 where
we show eBL plotted against eTOT in a log-log plot. Equation (42) puts
bound on the range of Ra where the 2/7 scaling regime is observed. More
precisely, a transition to the asymptotic scaling predicted by Kraichnan
should be observed for values of Ra such that eBL ~ £ T O T - According to

Fig. 5. Behavior of the fraction of energy dissipated inside the viscous boundary layers over
the total energy dissipate inside the cell. The line are, respectively a fit with the expected slop
1/7 and with arbitrary slope ( ~ 0.177).

Fig. 4. Scaling of X versus rB. The points corresponds to Ra values of 3.34 • 106, 6.68 • I06,
1.67 • 107. The straight line is a linear fit, yielding A= 1.15 • rB.



Fig. 5, the critical Ra number for this transition is predicted at Ra~ 10 n ± 1

for Prandtl number of order 1. This prediction is in reasonable agreement
with recent experimental results found by Chavanne et. al.(15)

VI. CONCLUSIONS

The most important result shown in this paper is that the observed
scaling of Nu versus Ra in Rayleigh-Benard systems can be explained by
assuming that the thickness X of the thermal boundary layer is controlled
by (and also approximately equal to) the Bolgiano dissipation scale rB, i.e.
the scale at which buoyancy forces are balanced by the dissipative effects.
In order to justify our assumption we have introduced a local Bolgiano
scale LB(z) based on the local values of energy and temperature dissipa-
tion. By using direct numerical simulations of Rayleigh-Benard turbulence,
we have found that LB(z) is rather small near the thermal boundary layers
and becomes equal to the cell size near the center of cell. This is a key point
in our analysis because it allows to use Bolgiano scaling in order to
compute the dissipation scale. Previous investigations started with the
observation that LB is much larger than X and, hence, for z ^ X Bolgiano
scaling should be ruled out. Using the assumption that X ̂  rB, we predict
that LB{X) a: X. Such a relation has been verified numerically. Our findings
support and, in some sense, generalize the model proposed few years ago
by the Chicago group.(1) Let us also remark that our results agree quite
well with the observed Bolgiano scaling in direct numerical simulations of
Rayleigh-Benard systems.

We have not discussed the dependence of Nu on the Prandtl number
Pr. Both the model proposed by Castaing et al. and Shraiman-Siggia
predicts a Pr dependency which scales as Pr~2/7. Experimentally, for Pr^ 1
the scaling of Nu versus Ra seems to be independent of Pr, while for Pr < 1
it seems that Nu x Pr" with a small and positive. The whole behavior is
however not completely clear and it is still under investigation (see ref. 18
for very recent results). At any rate, a negative scaling exponent in the Pr
number is ruled out by existing experimental observations. The model we
have proposed in this paper can partially explain the experimental results.
Indeed, the Bolgiano dissipation scale rB can be a rather complex function
of Pr because either kinematic viscosity or thermal diffusivity can enter in
the computation of rB. Moreover, if one takes into account intermittent
fluctuations and multiscaling effects on the dissipation scale, the compu-
tation of rB may explain the observed dependence on Pr. This problem
deserves more investigations in the future.
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